Geometry of Inhomogeneous Poisson Brackets, Multicomponent Harry Dym Hierarchies, and Multicomponent Hunter–Saxton Equations

نویسندگان

چکیده

We introduce a natural class of multicomponent local Poisson structures $$\mathcal P_k + \mathcal P_1$$ , where is bracket order one and P_k$$ homogeneous odd $$k$$ under the assumption that has Darboux coordinates (Darboux–Poisson bracket) nondegenerate. For such brackets, we obtain general formulas in arbitrary coordinates, find normal forms (related to Frobenius triples), provide description Casimirs, using purely algebraic procedure. In two-component case, completely classify brackets up point transformation. From derive new Harry Dym (HD) hierarchies Hunter–Saxton (HS) equations for number components. our HS equation differs from well-known HS2 equation. DOI 10.1134/S1061920822040100

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetric Harry Dym Type Equations

A supersymmetric version is proposed for the well known Harry Dym system. A general class super Lax operator which leads to consistent equations is considered.

متن کامل

The geometry of spinors and the multicomponent BKP and DKP hierarchies

We develop a formalism of multicomponent BKP hierarchies using elementary geometry of spinors. The multicomponent KP and the modified KP hierarchy (hence all their reductions like KdV, NLS, AKNS or DS) are reductions of the multicomponent BKP.

متن کامل

An extended Harry Dym hierarchy

Abstract An extended Harry Dym hierarchy is constructed by using eigenfunctions and adjoint eigenfunctions of the spectral problems of the Harry Dym hierarchy associated with the pseudo-differential operator L = u∂ +u0 +u1∂−1 + · · ·. The corresponding Lax presentation possesses a self-consistent source involving squared eigenfunctions. The resulting extended Harry Dym hierarchy is reduced to t...

متن کامل

Multicomponent integrable wave equations II. Soliton solutions

The Darboux–Dressing Transformations developed in [1] are here applied to construct soliton solutions for a class of boomeronic–type equations. The vacuum (i.e. vanishing) solution and the generic plane wave solution are both dressed to yield one soliton solutions. The formulae are specialised to the particularly interesting case of the resonant interaction of three waves, a well-known model wh...

متن کامل

On the bi-Hamiltonian structures of the Camassa-Holm and Harry Dym equations

We show that the bi-Hamiltonian structures of the Camassa-Holm and Harry Dym hierarchies can be obtained by applying a reduction process to a simple Poisson pair defined on the loop algebra of sl(2,R). The reduction process is a bi-Hamiltonian reduction, that can be canonically performed on every bi-Hamiltonian manifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Russian Journal of Mathematical Physics

سال: 2022

ISSN: ['1061-9208', '1555-6638']

DOI: https://doi.org/10.1134/s1061920822040100